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ABSTRACT - The goal of this article is to give theoretical and empirical review for diagnostic check-
ing of multivariate volatility processes. In theoretical part we presented three categories diagnostics for con-
ditional heteroscedasticity models: portmanteau tests of the Ljung-Box type, residual-based diagnostics (RB)
and Lagrange Multiplier (LM) tests. In our empirical analysis we used the Ljung-Box statistics (Q-test) of
standardized residuals, those of its squared, as well as of the cross product of standardized residuals to check
the model adequacy. Our results showed that the residual-based diagnostics provide a useful check for model
adequacy. Overall result is that models perform statistically well.

Introduction

As empirical researchers are equipped with various conditional heteroscedasticity models,
checking the adequacy of a fitted model becomes an important issue for model selection. Gener-
ally, misspecification in the mean and variance results in inconsistency and loss of efficiency in the
estimated parameters (Tse, 2002, 358). Since estimating Multivariate GARCH models (MGARCH)
is time consuming, both in terms of computations and their programming (if needed), it is desir-
able to check ex ante whether the data present evidence of multivariate ARCH effects. Ex post, it is
also of crucial importance to check the adequacy of the MGARCH specification (Bauwens et. al.,
2006, 79). MGARCH models specify equations for how the covariance move over time (Rombouts
et. al., 2004). There are also tests specifically designed for multivariate models that are applied to
the vectors of residuals together. Popular univariate procedures that are also relevant for multi-
variate models include asymmetry tests and residual-based conditional moment tests (Mills et. al.,
2006). As mentioned by Tse (2002), diagnostics for conditional heteroscedasticity models applied in
the literature can be divided into three categories: portmanteau tests of the Box-Pierce-Ljung type,
residual-based diagnostics (RB) and Lagrange Multiplier (LM) tests (Bauwens et. al., 2006, 79). The
Box-Pierce-Ljung portmanteau statistic is perhaps the most widely used diagnostic (Tse, 2002,
358).

We considered trivariate time series models for some selected securities listed at the Belgrade
stock exchange (www.belex.co.yu). Prior to that, we had to perform univariate GARCH analysis
for each of the analyzed return series. Then, we checked the fitted models carefully: the Ljung-Box
statistics of standardized residuals and its squared values showed that models are adequate for
describing the conditional heteroscedasticity of the data. Multivariate (trivariate) GARCH models
which will be covered in this paper are restricted version of BEKK (named after Baba, Engle, Kraft
and Kroner, 1995), model, the diagonal VEC (DVEC, initially due to Bollerslev, Engle and
Wooldridge, 1988) model and Conditional Correlation Model (CCC, Bollerslev, 1990)). For trivari-
ate version of restricted BEKK, DVEC and CCC representations we estimated covariances among
daily log returns of BELEX15 index, Hemofarm and Energoprojekt stocks. For estimation of pa-
rameters in the univaraite and trivariate GARCH models we used EViews program, Version 4.1.

The methods for estimation parameters which we used are maximum log-likehood and two-step
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approach. Particularly, we tested how the covariances between chosen securities move over time in
trivariate case. Overall, our results show that the residual-based diagnostics provide a useful check
for model adequacy.

The rest of the paper is organized as follows. In Section 2, we present different diagnostics
for univariate GARCH models which are used in our analysis. Then, we report results of diagnos-
tic checking for univariate GARCH models. In Section 3 misspecification tests for multivariate
GARCH models are described. Then, we report results of diagnostic checking for trivariate
GARCH models. Finally, Section 4 concludes.

Univariate case

Diagnostic checking of univariate GARCH models (theoretical part)

Here we briefly reviewed of different test-statistics and diagnostics for univariate GARCH
models which are used in this paper and in references (Minovi¢, 2007).

Lagrange multiplier (LM) Test: This test is used to investigate whether the standardized re-
siduals exhibit ARCH behaviour. If the variance equation of ARCH model is correctly specified,
there should be no ARCH effect left in the standardized residuals (EViews 5 User’s Guide). It is

calculated as LM = TR?, where R? is defined above. Reject Ho if LM > ;(2 (m) , where m is order of
ARCH effect (Greene, 2003).

Q Test (Ljung and Box, 1978): It is used to test for the presence of autocorrelation of order m
in residuals and it is calculated as

m ~2

o(m)=T(T+2)> 2. @.1)
o -1

The function p,, p,, ... is called the sample autocorrelation function (SACF) of r: (Tsay, 2005).

Q test has a y>-distribution with m degrees of freedom under the null hypothesis (Vogelvang,
X g YP g g

2005). The Ljung—Box statistics of the residuals can be used to check the adequacy of a fitted model
(Tsay, 2005).

Q? Test: It is used to test for the presence of autocorrelation of order m in squared residuals.
Then, it is used to test for remaining ARCH effect in the variance equation and to check the specifi-
cation of the variance equation (EViews 5 User’s Guide).

The F-statistic reported in the regression output is used to test the null hypothesis that all of
the slope coefficients (excluding the constant, or intercept) in a regression are zero. For ordinary
least squares models, the F-statistic is computed as:

_ RY/(k-1)
(1-R?)/(T-k)

(2.2)

Under the null hypothesis with normally distributed errors, this statistic has an F-
distribution with (k - 1) and (T - k) degrees of freedom. The total number of regressors is termed as
k; number of restrictions is termed as k — 1; T is number of observations (Brooks, 2002), (EViews 5
User’s Guide). The p-value given just below the F-statistic, denoted Prob(F-statistic), is the mar-
ginal significance level of the F-test (EViews 5 User’s Guide).

Diagnostic checking of univariate GARCH models (empirical part)
In this part we consider univariate case and we use data of daily log returns for BELEX15 index,
Hemofarm stock and Energoprojekt stock, respectively. Our data cover the period from October 3,
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2005 to October 6, 2006 (Minovi¢, 2007). We applied log-difference transformation to convert data
into continuously compounded returns, because the price series (log values) of both stocks and

index is not stationary and are stationary when they are first differenced. Let 7,, r,,, and r, be the

t7
log return series (Figure 1) corrected for autocorrelation in the mean of BELEX15 index, Hemofarm

and Energoprojekt stocks, respectively [8].

Figure 1: The graphs of daily log returns of BELEX15 index (r1), Hemofarm (r2) and Energoprojekt (r3)
stocks, respectively.
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We observe from Figure 1 that the log returns of BELEX15 index, Hemofarm and Energopro-
jekt stocks evidence the well known the volatility clustering effect. It is tendency for volatility in
financial markets to appear in bunches. Thus large returns (of either sign) are expected to follow
large returns, and small returns (of either sign) to follow small returns (Brooks, 2002), (Minovi¢,
2007).

We use four steps for building a volatility model for each of the log return series. The first
step is to specify a mean equation by testing for serial dependence in the data and building an
ARMA model for the log return series to remove any linear dependence. Then, in the second step,
we use the residuals of the mean equation to test for ARCH effects. Next, in the third step, we spec-
ify a volatility model if ARCH effects are statistically significant and perform a joint estimation of
the mean and volatility equations. Finally, in the fourth step we check the fitted model carefully
(Tsay, 2005).

In univariate case, obviously, the residuals have to be tested for the presence of autocorrela-
tion. In time-series terminology this is called “diagnostic checking’. With the Ljung-Box (Q) test, we
tested whether the residuals behave like a white noise process (Vogelvang, 2005). Table 1 reports
the Q(m) and Q?(m) statistics for each series. We applied the Lagrange multiplier (LM) test on our
series in order to investigate whether the standardized residuals exhibit ARCH behaviour (EViews
5 User’s Guide), (Bauwens et. al., 2006, 79), (Minovi¢, 2007).

Table 1: The Ljung-Box statistics of standardized residuals and squared standardized residuals in ARMA
models and test for ARCH effect.

The Ljung-Box Statistics ARCH-LM(5) test

series Q(2) Q) QM) | QBG6) | Qx2) | Qx5 | Qx9) | Q36) | F-stat | Obs*R"2
BELEX15 0.655 | 2.780 | 4.290 | 26.559 | 2.726 | 4.121 | 6.496 | 26.178 | 0.726 3.666
(0.721) | (0.734) | (0.891) | (0.874) | (0.256) | (0.532) | (0.689) | (0.885) | (0.604) | (0.598)
Hemofarm 1.453 | 7.483 | 11.491 | 34.857 | 33.866 | 47.446 | 72.915 | 86.635 | 6.613 29.775
(0.484) | (0.187) | (0.244) | (0.523) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000)
. 1.848 | 2209 | 3.406 | 26.659 | 10.437 | 13.065 | 13.852 | 26.716 | 3.138 15.099

Energoprojekt

(0.397) | (0.820) | (0.946) | (0.871) | (0.005) | (0.023) | (0.128) | (0.870) | (0.009) | (0.010)
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We see from table above that is the significant Q-statistics for squared residuals across all lag
lengths for Hemofarm stock and we infer the presence of ARCH effects. The Q-statistics for
squared residuals across all lag lengths for BELEX15 index is not significant, it ignores the exis-
tence of ARCH effects. But the heteroscedasticity in BELEX15 and Hemofarm is also observed in
the plots of the actual values of residuals (see Minovi¢, 2007). From Table 2.1 we see that is only
one significant autocorrelation on lag 2 in squared residuals in ARMA model for Energoprojekt
stock. It is evident that exist ARCH effect for Energoprojekt stock. On the other hand, the Lagrange
multiplier (LM) test (Table 2.1) shows strong ARCH effects for Hemofarm stock with test statistic F
= 6.613, the p-value of which is zero; and ARCH effect for Energoprojekt stock with test statistic F =
3.138, the p-value 0.009. Then this test shows no ARCH effect for BELEX15 index with test statistic
F =0.726 and the p-value 0.604 (Minovi¢, 2007).

We built a volatility model for each asset returns and we inferred that right model for
BELEX15 index is the ARMA(1,1)-GARCH(1,1), then for Hemofarm stock is the ARMA(2,2)-
IGARCH(1,1) and for Energoprojekt stock ARMA(0,0)-GARCH(1,1) model (for detail see Minovic,
2007). However, Hemofarm stock follows Integreted GARCH model (IGARCH). In order to exam-
ine IGARCH process, we applyed Wald test. Finally, we checked the fitted models carefully. The
Ljung-Box statistics (Table 2.2) of standardized residuals and those of its squared showed that
models are adequate for describing the conditional heteroscedasticity of the data . We applyed the
ARCH test on the standardized residuals to see if there ware any ARCH effects left. Both the F-
statistic and the LM-statistic are very insignificant, suggesting no ARCH effect up to order 5 or 10
for each series BELEX15 index, Hemofarm and Energoprojekt stocks (see Table 2) (Minovi¢, 2007).

Table 2: The Ljung-Box statistics and ARCH-LM test of order 5 and 10.

The Ljung-Box Statistics ARCH-LM(5) test ARCH-LM(10) test
series Q(36) Q2(36) F-stat Obs*R”2 F-stat Obs*R”2
25.590 26.319 0.265 1.351 0.423 4.356
BELEX15

(0.901) (0.881) (0.932) (0.930) (0.934) (0.930)

Hemofarm 29.038 23.685 0.084 0.432 0.146 1.518
(0.788) (0.943) (0.995) (0.994) (0.999) (0.999)

. 26.447 22.156 0.799 4.028 0.606 6.183

Energoprojekt

(0.878) (0.966) (0.551) (0.545) (0.808) (0.800)

On Figure 2 we plot the GARCH variances for BELEX15 index, Hemofarm and Energopro-
jekt stock. We see on this figure that all variances are unstable over time.

Figure 2: The GARCH variance series for BELEX15 index, Hemofarm and Energoprojekt stocks.
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We found that correlation coefficients between log returns of BELEX15 index and Hemofarm
stock is 0.49; between log returns of BELEX15 index and Energoprojekt stock is 0.40; and between
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log returns of Hemofarm and Energoprojekt stocks about 0.02 and we conclude that these two
stocks are practically noncorrelated (Minovi¢, 2007).

In addition to visual inspection Figure 2.2 tell us that GARCH variance series exhibit signifi-
cant changes over time for both stocks and index. Therefore, these variances are very unstable over
time. A plot of GARCH variances of BELEX15 index, Hemofarm and Energoprojekt stocks reveals
that BELEX15 index has been more volatile than Hemofarm and Energoprojekt stocks. On graph
for variance of Hemofarm stock, we observe the greatest peak in period June-July 2006, it was
when company Schtada was bought stocks of Hemofarm and Schtada was became of major. We
see significant autocorrelation on this graph which occur because Hemofarm in univariate case
follow IGARCH process. On graph for variance of Energoprojekt, we see that the first peak was in
February 2006, when Energoprojekt company signed contract in Nigeria valued 151 million euros
(Minovi¢, 2007).

Multivariate case

Theoretical review of misspecification tests for multivariate GARCH models

Asymmetry tests

Engle and Ng (1993) have proposed a set of tests for asymmetry in volatility, known as sign
and size bias tests. The Engle and Ng tests should thus be used to determine whether an asymmet-
ric model is required for a given series, or whether a symmetric GARCH model can be deemed
adequate. In practice the Engle and Ng tests are usually applied to the residuals of a univariate

GARCH fit to individual series. Denote an individual series of disturbances as ¢,, and define S, ,
as an indicator dummy that takes the value 1 if & <0 and zero otherwise. Then the test for sign

bias is based on the significance or otherwise of @ in the regression

= +dS it 3.1)

where e, is an i.i.d. (independently and identically distributed) error term. If positive and
negative shocks to &, impact differently upon the conditional variance, then ¢ will be statisti-
cally significant (Mills et. al., 2006).

It could also be the case that the magnitude or size of the shock will affect whether the re-
sponse of volatility to shocks is symmetric or not. In this case, a negative sign bias test would be

conducted, based on a regression in which S,_, is now used as a slope dummy variable. Negative

sign bias is argued to be present if ¢ is statistically significant in the regression
A2 —
& =h+hS 6 +e,. 3.2)

Finally, defining S,, =1-S,,, so that S, picks out the observations with positive innova-

=17/

tions, Engle and Ng propose a joint test for sign and size bias based on the regression
& =4 +4S +bS e +S e, e (3.3)

Significance of ¢ indicates the presence of sign bias, where positive and negative shocks

have differing impacts upon future volatility, compared with the symmetric response required by
the standard GARCH formulation. On the other hand, the significance of ¢, or ¢, would suggest

the presence of size bias, where not only the sign, but also the magnitude, of the shock is impor-
tant. A joint test statistic is formulated in the standard fashion by calculating TR® from regression
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(3.3), which will asymptotically follows a »° distribution with 3 degrees of freedom under the null
hypothesis of no asymmetric effects (Mills et. al., 2006).
Residual-based conditional moment tests

If the model is correctly specified, and represents an adequate characterization of the data,
certain moment relationship should hold on an appropriately standardized measure of the residu-
als. Let @ denote a k x1 parameter vector (containing all model parameters) and r(€) denote the

restrictions function required for the test. The null hypothesis is:
H,:r(0)=0. (3.4)

Let Q = var(r(0)), (3.5)

where @ is vector of estimated parameters.

Then the Wald test statistic is given by
W =r6) Q). (3.6)
Under the null, W* : 47, and so the null hypothesis is rejected if W > ;(f,a , where « is the

size of the test and J is the number of restrictions. The variance-covariance in (3.5), Q, may be
calculated from the residual sum of squares of the regressmn of m (the values of elements of the
moment restriction function by observation) on dl,dz, .d ., the values of each of the derivatives
of the log-likelihood, observation by observation. The residual sum of squares of this regression is
given by

R="m-m"D(D'D) D'i. (3.7)

The required variance is then

~ R )
Q= 77 (Mills et. al., 2006). (3.8)
Multivariate model diagnostics

Among the specific multivariate model diagnostics, Bauwens (2003) propose the use of a
multivariate version of the Ljung-Box test due to Hosking (1980) (Mills et. al., 2006). This test is the

most widely used diagnostics to detect ARCH effects (Bauwens et. al., 2006, 79). Let Z, = PAI,’” 2

denote the N-vector of standardized residuals, the test statistic is given by
HM (M) = Tzi“(T -j) r{C;(0)C, ()G, (0)C, ()}, (3.9)
where Z, =VECH (£,2,) and C, () is the sample autocovariance matrix of order j given by:
C,(j)= Tl,i‘l(z’ -Z)(z.,-Z), j=0...T-1, (3.10)

with Z =(Z, +...+Z,)/T. Under the null hypothesis of no dependence in the standardized

residuals (i.e. no ARCH effects), the test statistic is asymptotically distributed as a y* with N°M
degrees of freedom (Bauwens et. al., 2006, 79), (Mills et. al., 2006).

The Box-Pierce portmanteau statistics have been used as the benchmark for detecting model
inadequacy in multivariate conditional heteroscedasticity models. This test is based on cross-
products of the standardized residuals often provides a wuseful diagnostic. Denoting
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g = (8,1,...,é,k ) and the elements of it by &;,, we define the i-th standardized residuals at time ¢

z,=6,1:6, . (3.11)

it

A A

Let p,, be the estimated conditional correlation coefficient defined by p,, =6;,//6,,0,,

we consider ¢, defined by

zi -1 i=j

¢ = R T (3.12)
Zithz _p[j,t 1#]

for i, j=1,...,k . When the constant-correlation or the no-correlation models are estimated,

p;, is a constant with respect to t. Under correct model specification, c;, is asymptotically serially

!
uncorrelated and £ (cw | CDH) — 0 as n— 0. Thus, a diagnostic can be constructed based on the

Box-Pierce statistic of the squared lag autocorrelation coefficient of ¢, . Specifically, we denote 7,

as the lag-h autocorrelation coefficient of ¢, , and define
O(i, jsm)=n) 1y (3.13)
h=1

If the multivariate conditional heteroscedasticity model fits the data, ¢;, should be serially

uncorrelated for 7 and j. An excessive value of Q would suggest model inadequacy. The test has
been widely used in the empirical literature for diagnosing both univariate and multivariate condi-
tional heteroscedasticity models (Tse et. al., 1999, 679).

Ling and Li (1997) develop another diagnostic test for unparametrized heteroskedasticity in
the standardized residuals (Mills et. al., 2006). The Ling-Li test represents a rigorous approach to
conducting tests for multivariate conditional heteroscedasticity, providing the justification for the
asymptotic null distribution (Tse et. al., 1999, 679). Their formulation resembles a multivariate ver-
sion of the Durbin-Watson test applied to the squares of the standardized residuals. It is defined
as:

LL(M) =T§:I%(h) (3.14)

which asymptotically follows a y’ (M ) under the null of no conditional heteroscedasticity,
and where (Bauwens et. al., 2006, 79), (Mills et. al., 2006)

T
£¥'e —N)(é & ,-N
&/(h) — t;l( - )( ' h2 ' ) . (315)
> (858, - N)
t=h+1

In particular, imposing the restriction that the variance matrix X, is diagonal, Ling and Li

reported that the LL(M) statistic has power against situations in which the orders of the condi-
tional variance equations are misspecified (Tse et. al., 1999, 679).

In the derivation of the asymptotic results, conditional normality of the innovation process is
not assumed. The statistic is thus robust with regard to the conditional distribution choice. Tse and

Tsui (1999) show that there is a loss of information in the transformation of the residuals &3¢,

and the test may suffer from a power reduction (Bauwens et. al., 2006, 79). In other words, the
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Ling-Li test may not have good power if the misspecification occurs only in the conditional covari-
ance term (Tse et. al., 1999, 679). Furthermore, Duchesne and Lalancette (2003) argue that if an in-
appropriate choice of M is selected, the resulting test statistic may be quite inefficient. For this rea-
sons, these authors propose a more powerful version of the LL(M) test based on the spectral den-

sity of the stochastic process {égﬁ;lé, teZ } which is i.i.d. under null of homoscedasticity. Interest-

ingly, since their test is based on a spectral density estimator, a data-dependent choice of M is
available (Bauwens et. al., 2006, 79). Ling and Li (1997) further developed this work and derived
the asymptotic distribution of the portmanteau statistic in the multivariate case. The Ling-Li statis-
tic is based on the serial correlation coefficients of the transformed vector of residuals (Tse, 2002,
358).

Lagrange Multiplier (LM) tests are also very widespread in the GARCH literature. Gener-
ally, they have an advantage over Ljung-Box and Ling and Li tests due to their efficiency when the
alternative is correct (although they can be asymptotically equivalent in certain cases). Bollerslev,
Engle, and Wooldridge (1998) and Engle and Kroner (1995), among others, have developed LM
tests for MGARCH models (Bauwens et. al., 2006, 79).

To reduce the number of parameters in the estimation of MGARCH models, it is a common
practice to introduce restrictions. For instance, the CCC model of Bollerslev (1990) assumes that the
conditional correlation matrix is constant over time. It is then desirable to test this assumption af-

terwards. Tse (2000) proposes a test for constant correlations. The null is o, = p,,/0;,,0,;, where
the conditional variances are GARCH(1,1), while the alternative is &, = p, /0,0, - The test

statistic is a LM statistic which under the null is asymptotically y° (N (N - l) / 2) (Bauwens et. al.,
2006, 79).
Engle and Sheppard (2001) propose an alternative procedure to test the constant correlation

hypothesis, in the spirit if the DCC models (for detail about these models see Minovi¢, 2007). The
null Hy:p=p Vt=1..T is tested against the alternative

H,:VECH (p,)=VECH (p) +ﬂ1*VECH(p,71)+...+,6’;VECH(p,7p). The test is easy to implement
since H, implies the nullity of all coefficients in the regression X, = + B X, | +...+ ,B;X it u,

where X, =VECH" (2,2,' -1, ), VECH" is like the VECH operator but it only selects the elements

A

under the main diagonal, Z, = p

null), and D, = diag (« L TP o e ) (Bauwens et. al., 2006, 79).

The residual-based F test (RBF(i,j)) described by Pagan and Hall (1983) consists of running a
regression of the cross-products of the standardized residuals on some “information variables” and
examining the statistical significance of these variables. Bollerslev (1990) incorporated the lagged
values of the cross-products of the standardized residuals. The diagnostic is then based on the F
statistic for the joint significance of the two regressors (Tse et. al., 1999, 679).

"2D'¢ is the Nx1 vector of standardized residuals (under the

Y. K. Tse and Albert K. C. Tsui (1999) considered several tests for model misspecification after
a multivariate conditional heteroscedasticity model has been fitted. They examined the perform-
ance of the recent test due to Ling and Li, the Box-Pierce test, and the residual-based F test using
Monte Carlo methods. They found that there were situations in which the Ling-Li test had very
weak power. The residual-based diagnostics demonstrated significant under-rejection under the
null. In contrast, the Box-Pierce test based on the cross-products of the standardized residuals of-
ten provided a useful diagnostic that has reliable empirical size as well as good power against the
alternatives considered (DeGroot et.al., 2003).
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Empirical analysis of trivariate GARCH models

For estimation of parameters in the univaraite and trivariate GARCH models we used
EViews program, Version 4.1. We use program for modeling restricted version of trivariate BEKK
model (named after Baba, Engle, Kraft and Kroner), and we extend this program on trivariate case
of DVEC (diagonal vector ARCH model) and CCC (Constant Conditional Correlation Model)
models (Minovi¢, 2007). A first simple method to estimate the parameters of a trivariate GARCH
models is the Berndt-Hall-Hall-Hausman (BHHH) algorithm. This algorithm uses the first deriva-
tives of the quasi-maximum likelihood (QML) with respect to the number of parameters that are
contained in multivariate GARCH models. This is an iterative procedure, the BHHH algorithm
needs suitable initial parameters (Franke et.al., 2005). For all calculations in our programs number
of iteration is 100 and convergence criterion is 1-10~ which suggests about high precision (Mino-
vi¢, 2007).

Modeling of restricted BEKK, DVEC and CCC models in trivariate version

Table 3 contains the coefficients, standard errors, z-statistics, log-likelihood and information
criteria for trivariate BEKK, DVEC and CCC model. The methods for estimation parameters which
we use are maximum log-likehood and two-step approach. Although maximum log-likehood
method can be used for all three models (BEKK, DVEC and CCC), for CCC representation we will
estimate parameters using the first step of two-step approach. It is enough because CCC model
uses constant correlation coefficient, and second step should be used only when correlation coetfi-
cient is time dependent (Minovi¢, 2007).

Table 3: Estimated parameters of trivariate BEKK, DVEC and CCC models

BEKK DVEC CCC

Coeff. S.E. z-Stat Coeff. S.E. z-Stat | Coeff. S.E. z-Stat

MU®1) -0.0003 0.0002 -1.4536 | -0.0001 0.0002 -0.3216 | -0.0001 0.0002 -0.6120
MU(2) -0.0006 0.0001 -8.1946 | -0.0003 0.0002 -1.6585 | -0.0006 0.0001 -8.4620
MU(3) -0.0005 0.0007 -0.7305 | -0.0003 0.0006 -0.5244 | -0.0003 0.0006 -0.5453
OMEGA(1) 0.0017 0.0004 4.8070 | 0.0000 0.0000 1.9624 | 0.0000 0.0000 1.3449
BETA(1) 0.7826 0.0879 89069 | 0.5216 0.1549 3.3679 | 0.4973 0.3058 1.6260
ALPHA(1) 0.3495 0.0739 4.7325 | 0.2006 0.0709 2.8288 | 0.1479 0.0913 1.6192
OMEGA(2) 0.0000 0.0000 0.0519 | 0.0000 0.0000 3.0426 | 0.0000 0.0000 -9.3533
BETA(2) 0.8416 0.0058 144.5231 | 0.6827 0.0168 40.5688 | 0.7085 0.0010 70.8697
ALPHA(2) 0.7682 0.0373 20.6101 | 0.5952 0.0623 9.5593 | 0.5820 0.0534 10.8965
OMEGA(3) 0.0016 0.0006 2.4940 | 0.0000 0.0000 2.6601 | 0.0000 0.0000 5.1316
BETA(3) 0.6814 0.1607 4.2397 | 0.3052 0.2135 1.4291 | 0.2269 0.1382 1.6417
ALPHA(3) 0.4283 0.0975 4.3925 | 0.2479 0.1152 2.1518 | 0.2539 0.1057 2.4011

OMEGA4) 0.0001 0.0002 0.2752 | 0.0000 0.0000 5.6805 - - -

BETA(4) - - - 0.6431 0.0690 9.3175 - - -
ALPHA(4) - - - 0.2545 0.0692 3.6794 - - -
OMEGA(5) -0.0055 0.0210 -0.2643 | 0.0000 0.0000 2.2551 - - -

BETA(5) - - - 0.3899 0.2062 1.8905 - - -
ALPHA(5) - - - 0.1765 0.0716 2.4647 - - -
OMEGA(6) 0.0003 0.3462 0.0010 | 0.0000 0.0000 -0.1434 - - -

BETA(6) - - - 0.4663 0.2539 1.8363 - - -
ALPHA(6) - - - 0.3630 0.1137 3.1918 - - -

Log likehood 2886.269 2697.955 3534.373
Avg. log likelihood 11.8290 11.5792 14.4851
Number of coeff. 15 21 12
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In Figure 3 we plot conditional covariances for daily log returns of BELEX15 index - Hemo-
farm stock (cov_rirz); BELEX15 index - Energoprojekt stock (cov_rirs); Hemofarm - Energoprojekt
stocks (cov_rars), respectively in restricted BEKK, DVEC and CCC models.

Figure 3: Estimated conditional covariance for daily log returns of BELEX15 index and Hemorfarm stock;
BELEX15 index and Energoprojekt stock; Hemofarm and Energoprojekt stocks in the trivariate BEKK,
DVEC and CCC models, respectively.
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We observe from these pictures on Figure 3.1 that the restricted BEKK and DVEC results
have similar behaviour for all pair log returns of stocks and index, but very different behaviour in
CCC model where the covariance is positive and of not negligible magnitude especially in case
Hemofarm and Energoprojekt stocks. It is because CCC model reduces to three univariate
GARCH(1,1) models (covariance equations do not contain terms with cross-product of residuals).
It is evidently that correlations between log returns of stocks and index are very unstable over
time. Then, from Figures 3.1 we observe that Hemofram and Energoprojekt stocks are noncorre-
lated, this plots around zero on the graph (Minovi¢, 2007).

On all figures in cases of BELEX15 index and Hemofarm stock as well as Hemofarm and En-
ergoprojekt stocks we see that relationship between these stocks changes dramatically in period
June-July 2006 (it was when company Schtada was bought stocks of Hemofarm). Since on all fig-
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ures in case BELEX15 index and Energoprojekt stock we see that the greatest peak match with time
when Energoprojekt company signed contract in Nigeria, February 2006 (Minovi¢, 2007).

In Figure 4 we plot conditional variances for daily log returns of BELEX15 index (var_r1),
Hemofram (var_rz2) and Energoprojekt (var_rs) stocks, respectively in our three considering mod-
els.

Figure 4: Estimated conditional variances of daily log returns on BELEX15 index, Hemofarm stock and En-
ergoprojekt stock, respectively in the trivariate BEKK, DVEC and CCC models.

BEKK

0008
0007 0004

000028

000024
0006

000020 0005 0003

0004
000016 0002
0003
000012
0002 0001
000008

0001

T T T T T T T T T
2006:01 2006:04 2006:07 2006:01 2006:04 2006:07 2006:01 2006:04 2006:07

— v — a2 [—var ]
0007
00004 00025
0006
00020
00003 0005
0004 00015
00002 0003
00010
00001 0002
00005
0001
T T T 7 u T T T T
2006:01 2006:04 2006:07 2006:01 2006:04 2006:07 2006:01 2006:04 2006:07
—varn —verr

0008
0007 0005

000032

000028
0006

000024 0005

0004
000020 0004 0003
0003
000016 0002
0002
000012 o001 0001

T T T T U T
2006:01 2006:04 2006:07 2006:01 2006:04 2006:07 T T T
2006:01 2006:04 2006:07

=

We observe from figure above that the restricted BEKK, DVEC and CCC results exhibit
rather similar behaviour for each considering stocks and index. Figure 3.2 shows that BELEX15
index has always been more volatile than Hemofarm and Energoprojekt stock. On the second pic-
ture in all three models we see that time of the greatest peak match with time when Hemofarm
was sold. We observe from figures that exist significant autocorrelations in data of Hemofarm
stock, it is because in univariate case Hemofarm follow IGARCH process. On the third picture in
all three models we observe the first peak in February 2006, when Energoprojekt company signed
contract in Nigeria valued 151 million euros. The graphs of conditional variances for daily log re-
turns of BELEX15 index, Hemofram and Energoprojekt stocks in our three considering models are

Volume 40 © Spring 2008 83



very similar to graphs in univariate case. All variances in all three models are highly unstable (Mi-
novi¢, 2007).
However, in order to choose the best model, diagnostic tests should be calculated.

Diagnostic checking

In the multivariate case we propose to examine the standardized residuals, squared stan-
dardized residuals as well as the cross products of the standardized residuals. Our results show
that the residual-based diagnostics provide a useful check for model adequacy (for detail see refer-
ence Minovi¢, 2007) (Tse, 2002, 358).

Figure 5: The standardized residuals of BELEX15 index (stres1), Hemofarm (stres2) and Energoprojekt
(stres3) stocks versus its log returns in trivariate GARCH models.
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The standardized residuals for log return of BELEX15 index, log returns of Hemofarm and
Energoprojekt stocks are calculated as:

2, =(r—f)/ o, wherei=1,2,3. (3.16)
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The cross product of residuals for log returns of BELEX15 index — Hemofarm stock; log re-
turns of BELEX15 index — Energoprojekt stock; log returns of Hemofarm — Energoprojekt stocks
are calculated as:

£2,=(n _/A‘f)(’”j _[‘./)/ G0 - (3.17)

wherei=1,2,3, j=1,2, 3 and in the equation i # j. If the model is correctly specified, the
standardized residuals should be uncorrelated, and identically distributed random variables with
mean zero and variance one (EViews 5 User’s Guide).

The goodness-of-fit of a multivariate GARCH model can also be assessed by calling the ge-
neric plot function on a fitted “mgarch” object. There is significant deviation in the tails from the
normal QQ-line for both residuals, which shown earlier. Thus it seems that the normality assump-
tion for the residuals may not be appropriate (Zivot et.al., 2006).

Figure 6: The QQ-plot of standardized residuals of BELEX15 index (stres1), Hemofarm (stres2) and En-
ergoprojekt stocks (stres3) vs. normal distribution in trivariate GARCH models.
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From Figure 6 we see that all curves have concave shape indicating that the distributions of
standardized residuals are positively skewed with long right tail. Thus, there is significant devia-
tion in the tails from the normal QQ-line for all three standardized residuals and estimates are still
consistent under quasi-maximum likelihood (QML) assumptions.

For diagnostic checking we used the Ljung-Box statistics of standardized residuals and those
of its squared, and of cross product of standardized residuals (Table 4 and 5). We observed that in
trivariate case we have ARCH effect in variance equation of Hemofarm stock, except for DVEC
model. The Q-statistics for checking whether there are any ARCH effects left in the residuals show
that autocorrelation is not significant in variance equations for log returns of BELEX15 index and
Energoprojekt stock (Minovi¢, 2007).

Table 4: The Ljung-Box statistics of standardized residuals and those of its squared for log return of
BELEX15 index, log return of Hemofarm and log return of Energoprojekt stocks,
where the number in parentheses denotes p-value.

Q(36) BELEX15 Hemofarm  Energoprojekt
BEKK 25.628 (0.900) 44.451 (0.158) 31.161 (0.698)
DVEC 23.205(0.951) 43.256 (0.189) 34.341 (0.548)
CCC 22976 (0.955) 40.311(0.247) 26.675(0.871)
Q(36)

BEKK 29.221 (0.781) 58.530 (0.010) 38.323 (0.365)
DVEC 24.128 (0.935) 47.444 (0.096) 40.719 (0.270)
CCC  26.468 (0.877) 83.197 (0.000) 34.328 (0.548)
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Table 5: The Ljung-Box statistics of cross product of standardized residuals,
where the number in parentheses denotes p-value.
Q%(36) BELEX15-Hemofarm BELEX15-Energoprojekt Hemofarm- Energoprojekt
BEKK 30.429 (0.730) 32.122 (0.654) 34.498 (0.540)
DVEC 31.550 (0.680) 27.746 (0.836) 32.244 (0.648)

From Table 5 it is evident that there are no ARCH effect in covariance equations for BEKK
and DVEC models for pairs BELEX15-Hemofarm; BELEX15-Energoprojekt, Hemofarm-
Energoprojekt. Thus, the check of the models shows that the models are appropriate i.e. Q-
statistics show that models are adequate for describing the conditional heteroscedasticity of the
data.

Final conclusion: It is interesting to note that DVEC model would be the most convinient
model, because only that one does not show ARCH effect for Hemofarm stock. BEKK and CCC
model have smaller number of parameters and they are much easier to estimate than DVEC
model. Thus, we found that the most ‘complicated’ model is the best model (Minovi¢, 2007).

Conclusion

This article presents theoretical and empirical calculation for diagnostic checking of univari-
ate and multivariate GARCH models. We illustrated our empirical approach by applying it to
daily returns of the BELEX15 index, Hemofarm and Energoprojekt stocks. We presented different
diagnostics for univariate GARCH models which are used in our analysis (Lagrange Multiplier
test, Ljung-Box test, F-test) and we reported results of analysis. Overall, our results showed that the
residual-based diagnostics provide a useful check for model adequacy. In theoretical part for mul-
tivariate case we presented three categories diagnostics for conditional heteroscedasticity models:
portmanteau tests of the Box-Pierce-Ljung type, residual-based diagnostics (RB) and Lagrange
Multiplier (LM) tests. The Box—Pierce-Ljung portmanteau statistic is the most widely used diag-
nostic. In empirical part, after a trivariate conditional heteroscedasticity model had been fitted, we
used the Ljung-Box statistics (Q-test) of standardized residuals, those of its squared, as well as of
the cross product of standardized residuals to check the model adequacy. Overall result is that
models perform statistically well.
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