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Abstract: This paper analyses the relationship between real GDP and CO2 emissions for 17 transitional
economies based on a series of annual data from 1997 to 2014. The analysis was conducted using
Dynamic Ordinary Least Squares (OLS) (DOLS) and Fully Modified OLS (FMOLS) approaches. The
results clearly suggest the existence of a statistically significant long-run cointegrating relationship
between CO2 emissions and real GDP. A 1% change in GDP leads to around a 0.35% change
of CO2 emission on average for the considered group of countries. Close values of long-run
coefficients for all estimations confirm the robustness of the estimated results. The authors state
that transitional economies need to follow global policy incentives, and try to implement new
mechanisms and instruments for the purpose of reducing CO2 emissions, such as environmental
taxes, emissions-trading schemes, and carbon capture and storage, if they want to achieve future CO2

emission reductions, while attaining economic growth.

Keywords: real GDP; CO2 emissions; DOLS; FMOLS; environmental degradation; economic growth;
transitional countries

1. Introduction

The relationship between environmental degradation and economic growth is one of the most
important areas in the literature of ecological economics, both theoretically and empirically [1–7].
Since the 1980s, the focus of scientific and technical discussion has been placed on the environment
and its deterioration, which is a direct consequence of climate change and especially global warming.
Environmental degradation is among the most serious problems confronting modern societies [8],
and greenhouse gas (GHG) emissions, mainly containing carbon dioxide (CO2), represent the
principal cause of climate change. Sustainable economic development can be achieved by sustainable
environmental development in any economy [9]. The relationship between environmental quality and
economic growth is important because it allows policy-makers to understand the interaction between
the environment and economic growth. The impact to the environment resulting from economic
growth is crucial because the function of any economy is to maximize economic growth [1,10].

“The process of economic growth and sources of differences in economic performance across
nations are some of the most interesting, important, and challenging areas in modern social
science” [11] (p. xv). We can define economic growth as an increase in gross domestic product
(GDP) over time, which is one of the main objectives of every national economy. Therefore, the most
common parameter to measure economic growth of a country is its GDP growth.

Be that as it may, in the last decade or so, extensive discussions were conducted about the fact
that GDP is not the most appropriate indicator of economic performance. A need to develop more
adequate indicators to monitor global changes in the 21st century, such as poverty, climate change,
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devastation of resources, quality of life, and health status of a nation, has been widely expressed [12].
Economic indicators, such as GDP, in general are not designed to be a comprehensive measure of
well-being and prosperity [13–17]. Even Kuznets [18], one of the main creators of GDP, stated that the
welfare of a nation can scarcely be inferred from a measurement of national income. However, GDP’s
clear methodology and a long history of its usage by economists and policymakers alike, make it a
widely exploited indicator of economic activity. Therefore, GDP is used in this paper as an indicator of
economic growth. ”Without measures of economic aggregates like GDP, policymakers would be adrift
in a sea of unorganized data” [19] (p. 3).

Abovementioned environmental degradation is caused by factors such as industrialization,
population, transportation, poverty, congestion and traffic, soil erosion, exploitation of open access
resource due to ill-defined property rights, etc. [20]. Intensive and excessive use of fossil fuels is one
of the main reasons for the significant increase in anthropogenic GHG emissions that lead to climate
change [21]. Boopen and Vinesh [7] also underline that CO2 emissions have grown dramatically in the
past century because of human activities, primarily by the use of fossil fuels and changes in land use.
Generally, producers are prone to using non-renewable sources of energy such as carbon based fossil
fuels. Combustion of these fuels produces CO2 and other GHG emissions as a by-product. GDP grows
with the growing increase in production, which consequentially means an increase in the use of fossil
fuels and the growth of CO2 emissions.

One possible solution is to create a low-carbon world economy, which in turn has technological,
economic, engineering, and organizational obstacles. The biggest obstacle in creating a global
agreement that takes into account the consequences of climate change is the strong negotiating position
of countries with great reserves of fossil fuels, such as the United States, Russia, China, Canada, and the
countries of the Persian Gulf [22]. Due to different levels of financial and technological development
of countries, and different intensities of CO2 emissions, a global instrument that takes into account all
of these obstacles is essential.

The Kyoto Protocol is the first significant global agreement that took into account the
characteristics of both developed and developing countries. Adopted in December 1997 as a protocol
of the Convention on Climate Change, it came into force in 2005. The Protocol defined specific
obligations of the Member States to limit or reduce GHG emissions, and stated that industrialized
countries should implement action plans and quantify the reduction of GHG emissions to meet their
targets primarily through national measures. Additionally, developed countries were to ensure a
transfer of technology and financial resources to developing countries for these purposes. The Kyoto
Protocol established three flexible mechanisms to assist countries with the aim of reducing the cost of
limiting GHG emissions: (1) Clean development mechanism—CDM, (2) Joint implementation—JI, and
(3) Emissions trading—ET [23].

However, the anticipated timeframe for the commitments countries have signed has not generally
been fulfilled. The Kyoto Protocol expired in 2012, and its extension to 2020 was adopted at the
UN Climate Conference in Doha (COP 18). Partially indeterminate decisions have been adopted
concerning financial assistance to transitional and undeveloped countries that are confronted with
problems caused by climate change. Another attempt to ensure the functioning of the mechanism
for stopping unwanted climate change was held in Paris (COP 21) in 2015. “The Paris Agreement is
the first global accord on climate change that contains policy obligations for all countries” [24]. Key
elements of the Paris Agreement focused on facilitating the transition between today’s policies and
climate-neutrality before the end of the century. Regarding the reduction of emissions, governments
agreed that a long-term goal is to keep the increase in global average temperature well below 2 ◦C,
relative to pre-industrial levels, with the aim of limiting the increase to 1.5 ◦C, since this would
significantly reduce risks and impacts of climate change. Furthermore, the Paris Agreement underlines
the need for global emissions to reach a peak as soon as possible, while undertaking reductions in
compliance with the best available science. It is acknowledged that developing countries will take
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longer to achieve this [25,26]. A particular challenge is that the Agreement will become operational
when at least 55 countries accounting for at least 55% of global emissions ratify it [24].

The majority of studies on the relationship between carbon emissions and economic growth in
developing countries are concentrated on Environmental Kuznets Curve (EKC) hypothesis. “Under
this hypothesis, environmental degradation increases during the initial stage of economic growth until
some threshold level or turning point in relations to income is reached, after which environmental
degradation begins to decline” [27] (p. 785). This clearly suggests an inverted U-shape of the
economic growth–environmental pollution relationship, and when we observe the existing literature
on EKC, it is evident that different methodologies, indicators, and data are used to test its’ validity.
Scientific papers that investigate the EKC hypothesis provide a wide range of results that often have
diverging conclusions. Nevertheless, only a few research studies have gone the full distance to
examine the relationship between CO2 emissions and economic growth, beyond the postulates of EKC
hypothesis [6].

In the process of changing from a centrally planned to a market based economy, “the transitional
economies have experienced profound structural changes that continue to influence the evolution
of regional CO2 output” [28] (p. 137). In this paper, the authors try, at least partly, to provide
answers about the factors that are underlying the relationship between CO2 emissions and real GDP in
transitional countries. The authors have studied the cointegrating relationship between CO2 emissions
and economic growth for 17 transitional economies (Albania, Armenia, Azerbaijan, Belarus, Bosnia
and Herzegovina, Croatia, Georgia, Kazakhstan, Kyrgyzstan, Macedonia (Republic of), Moldova,
Montenegro, the Russian Federation, Serbia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan) over
the period of 1997–2014. The authors chose the transitional economies because even though there is a
vast amount of literature about this relationship, there is not sufficient research on this specific set of
countries. Furthermore, the authors are not aware of any recent empirical study that comprehensively
examines the long-run relationship between growth and environmental degradation in the countries
regarded as transitional according to the most recent classification of United Nations. There is a serious
doubt that developing countries have the ability to cope with climate change and disasters because
they have weak economic foundations and outdated technology compared to developed countries [29].
This makes transitional economies an interesting research topic.

The empirical analysis in this paper is mostly based on the set of standard panel cointegration
tools, such as Pedroni’s cointegration tests and the Fully Modified Ordinary Least Squares (OLS)
(FMOLS)/ Dynamic OLS (DOLS) estimators, with two distinctive aspects. First, it is completely based
on linear modelling because modelling of non-linear cointegration by simply extending linear to
quadratic function is a tremendously popular choice among EKC researchers. However, this does not
have strict theoretical grounds. For that reason, as a second aspect, traditional cointegration testing is
enriched with the Westerlund approach, which is more flexible in counting the likely structural breaks
and cross-sectional dependencies in economic and environmental performances of transition countries,
which is often neglected in empirical studies. The results of this paper suggest the existence of a robust
and statistically significant long-run cointegrating relationship between CO2 emissions and real GDP.

The paper is organized in six sections. After the Introduction, Section 2 briefly presents a literature
review on the relationship between CO2 emissions and economic growth, both from a group and
individual countries perspective. The data and methodology are discussed in Section 3. Section 4 gives
a clear review of the research results. Discussion with policy implications and possible directions for
further research is presented in Section 5, while Section 6 concludes.

2. Literature Review

There is a large number of papers empirically examining the issues of the relations between
environmental degradation and economic development indicators, and more particularly the EKC
hypothesis, using the tools of econometric analysis. Typically, the empirical models analysing EKC
assert an indicator of environmental degradation as a dependent variable vis-à-vis indicators of
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economic development and their squares (to control non-linearity) as the explanatory variables. One
of the first papers to use such a format was [30], which found a significant association between income
and environmental quality by applying the parsimonious econometric methodology. It also provided
evidence on possible non-linearity in this relation, indicating that most environmental indicators
deteriorate initially with a tendency to improve as countries approach middle-income levels.

The later empirical works have increased the complexity of the methodological approaches
following the theoretical advances in econometric analysis of time series and especially panel data. The
papers dealing with panel data can be roughly categorized with respect to the methodology to those
applying panel cointegration analysis and those applying traditional panel estimation techniques. The
main advantage of the panel cointegration approach is its focus on the long-run relationships, however,
the format of the models limits the number of the accounted variables typically to CO2 emissions, GDP,
and electricity consumption. Lean and Smyth’s [31] VECM (Vector Error-Correction Model) analysis
for five ASEAN (Association of Southeast Asian Nations) countries over the period 1980–2006 is a
typical example of such an approach. Based on quadratic specification, they concluded, among other,
that there is a statistically significant non-linear relationship between emissions and economic growth
in support of EKC. Arouri et al. [32] provided similar analysis and results for 12 MENA (Middle East
and North Africa region) countries over the period 1981–2005. However, having found that single EKC
turning points considerably vary across the countries, they expressed concerns regarding the validity
of conclusions stemming from the panel analysis. Martinez-Zarzoso and Bengochea-Morancho [33]
even extended the functional form to cubic specification in addressing the relationship between CO2

and GDP for 22 OECD (Organisation for Economic Co-operation and Development) countries for the
period 1975–1998. The cubic function indicated that a decline in CO2 emissions when income is rising
can be expected, but only up to a certain level, and then an increase of pollution can be expected again
at higher incomes. Kapusuzoglu [34] uses variance decomposition within cointegration analysis to
provide similar evidence on the causality from CO2 emissions to GDP in developing economies, but
not in OECD and European countries.

The use of a parsimonious empirical framework combining cointegration analysis and quadratic
functional form tends to be a very popular solution in the analysis of non-linear association between
CO2 emissions and GDP in EKC testing. However, such an approach is loosely based on the
theoretical grounds and may be a subject of certain critical appraisal in the broader context of
non-linear cointegration testing. The theoretical solutions to non-linear cointegration and turning
points determination are primarily based on the threshold vector equilibrium correction models (see
for example [35]) for the their summary. The power of the particular cointegration test in finite
samples depends on the class of non-linear relation, and a priori misspecification of the nonlinear
model is expected to create distortions in statistical inference [36]. Even in the case that the quadratic
form meets the proper specifications, some of the standard parametric tests of cointegration are not
straightforwardly applicable [37]. All of these issues are matters of further concern in the case of panel
analysis, as the standard panel cointegration testing (described in the methodology section) assumes
the use of linear models. It is worthwhile to mention that an extensive search of the literature beyond
the subject of EKC testing revealed that cointegration panel analysis based on quadratic modelling is
not frequently applied.

The second type of the panel studies, based on the traditional estimation methods, benefits from
the greater flexibility in choice of explanatory variables and model specification, yet its focus is on the
contemporaneous relationships between variables. For example, Tamazian and Rao [28] provided a
comprehensive analysis supporting EKC for the panel of 24 transition economies, after controlling for
unobserved heterogeneity, endogeneity, and impact of financial development and institutional quality.
In a similar type of study, Azam [38] reversed the direction of causality and estimated the negative
impact of environmental degradation by CO2 emissions on the economic growth of 11 Asian countries
between 1990 and 2011. Azomahou et al. [5] went beyond the standard parametric statistics using the
non-parametric kernel-based estimator to assess the relationship between CO2 emissions and GDP
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for the panel of 100 countries during the period 1960–1996, and concluded that there is evidence of
structural stability of the relationship.

Some other panel-wise empirical studies have examined the linkage between degradation and
economic development on a non-econometric basis. For example, the report by Bacon et al. [39]
provides a decomposition of the CO2 emissions from fossil fuels for 70 countries in the period 1994–2004.
Emissions per capita were only moderately positively correlated with GDP per capita and showed
no evidence of an eventual decline in emissions per capita at higher per capita income. Additional
research on the relationship between CO2 emissions and economic growth using the panel datasets
and estimation methods can be found in [40–47].

Furthermore, there is a copious amount of literature that investigates the relationship between CO2

emissions and GDP on a national level in developing countries. Jalil and Mahmud [48] analysed China
over the period 1975–2005 using the ARDL (Autoregressive Distributed Lag) methodology. A quadratic
relationship between income and CO2 emission was found. Nasir and Rehman [49] obtained the
same results for Pakistan for the period 1972–2008, while Odhiambo [6] obtained the results of a
distinct unidirectional causal flow from economic growth to carbon emissions for South Africa over
the period 1970–1997. A unidirectional relationship between GDP and CO2 emissions in the short
term was proved for Tunisia by analysing data over the period of 1980–2010 [50]. A cointegration
relationship between CO2 emissions, real GDP squared, real GDP, energy use, and imports and exports
of goods and services was proved for Algiers using ARDL over the period 1970–2010 [51]. The
more recent studies on this subject pay particular attention to the effects of the external sector on the
CO2–GDP dynamic, like export in Anatasia’s [52] study on Thailand and Malesia, or oil prices like in
Al-Abdulahi’s study [53] on Kuwait, Saudi Arabia, and the UAE, or Katricioglu’s study [54] for Turkey.

Further research on the CO2–GDP relationship for individual countries can be found in [55–62].

3. Materials and Methods

In this paper, 17 transition countries are observed for the period 1997–2014. Data on real GDP
(l_gdp) were retrieved from UNCTADstat [63], while CO2 emissions (l_co2) were retrieved from
CDIAC [64].

In this paper, we follow the standard procedure of time series modelling, which consists of two
methodological blocks: unit root testing as a prerequisite of the proper choice of modelling approach
(VAR/VECM/ARDL—standard abbreviations of the Vector Autoregression, Vector Error-Correction,
and Autoregressive Distributed Lag frameworks for modelling time series, respectively), and proper
model specification and estimation within the selected modelling approach. However, instead of a
single country, we use a panel dataset, whose analysis, in the context of time series modelling, differs
to a univariate case in terms of unit root tests and estimation methods. The vast majority of the recent
papers dealing with the empirical analysis of the intertwining effects between CO2 emission and
size of the economy use panel datasets and panel data estimation methods [3,44]. As emphasized by
the Al-Mulali [3], the use of panel datasets over the individual time series data brings about several
advantages in econometric modelling, such as the capability to control the unobserved heterogeneity,
the increase in the degree of freedom, and the more stable parameter estimates. As the empirical
results from the unit root testing suggest the use of the VECM and cointegration analysis approach,
we provide detailed discussion on this methodological approach within the panel framework.

3.1. Panel Unit Root Tests—Methodology

According to Hossfeld [65], panel unit root tests can be categorized as “first generation” or “second
generation”. The most notable tests of the first generation unit root tests are the Levin-Lin-Chu test
(LLC) [66] and the Im-Pesaran-Shin [67] test (IPS). Basically, these tests are extensions of the traditional
augmented Dickey-Fuller (ADF) unit root test for univariate time series modelling, under the very
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restrictive assumption of individual cross-sectional independency. Univariate case of ADF unit root
test for the stochastic process yt is based on estimating the test equation:

∆yt = ρyt−1 + ∑P
p=1 φp∆yt−p + γl

′Dl + εt, t = 1, . . . , T (1)

where Dl, l = {1, 2, 3} is a vector of deterministic terms, which specifies whether the process has no
constant term and time trend (empty set), only a constant term and no time trend, or a both constant
term and time trend,

Dl =


empty set

1
1, t

,

while εt is the error term identically independently normally distributed, εt ∼ N
(
0, σ2). The ADF test

statistics tests the null hypothesis that process yt has the unit root against the alternative that yt is
stationary. In mathematical notation of the Equation (1), it is equivalent to testing H0 : ρ = 0 against
the alternative H1 : ρ < 0.

The ADF test for a panel case is based on estimating the following equation:

∆yi,t = ρiyi,t−1 + ∑Pi
p=1 φip∆yi,t−p + γli

′Dli + εit, t = 1, . . . , T, i = 1, . . . , N (2)

which is basically an extension of Equation (1) across individuals, denoted by subscript i. The errors
εi,t ∼ N

(
0, σ2) are assumed to be independent across the individuals. Vectors of deterministic

components beside constant term (individual fixed effect) and time trend can also include time
dummies θt.

The LLC test estimates ADF regression on the pooled panel data by the OLS (standard abbreviation
of the Ordinary Least Squares estimator, the most frequently used in regression analysis), assuming
the same auto-regressive process across individuals, which is an additional restriction. Under the
assumption of common unit root, the LLC test is testing the null H0 : ρi = ρ = 0 ∀i, against the
alternative H1 : ρi = ρ < 0 ∀i. The IPS test relaxes the latter assumption, allowing the possibility of
varying autoregressive processes across individuals, and therefore uses the group-mean of individual
t-statistics in statistical inference

tNT = N−1 ∑N
i=1 tiT

(
Pi, φi1, . . . , φiPi

)
(3)

where tiT
(

Pi, φi1, . . . , φiPi

)
denotes the t-statistic for testing the unit root in the ith individual process

(lag order Pi is typically selected according to some info criterion). Accordingly, tNT is used to test null
H0 : ρi = 0 ∀i against the alternative H1 : ∃i ∈ {1, . . . , N}, ρi < 0.

The issue of cross-sectional dependency between individuals may be partially impeded in the
first generation tests, if the time fixed effects are included in the ADF specification (or equivalently, if
the regression is run on cross-sectionally demeaned data). The second generation unit root tests offer
some solutions in overcoming this issue, relaxing the assumption of cross-sectional independence [68].
The most notable test of the second generation, Cross-sectional IPS test (CIPS), was proposed by
Pesaran [69]. Instead of the standard ADF regression, CIPS tests are based on the Cross-sectional ADF
regression (CADF), which adds lagged cross-sectional means of individuals yt to control for effects
of the common factor, while the computation of the test statistics and the inference follows the IPS
procedure [65]. The CADF regression is specified as follows (for simplicity lagged differences of yi,t
and yt are omitted)

∆yi,t = ρiyi,t−1 + ϕiyt−1 + ψi∆yt + γli
′Dli + εit, t = 1, . . . , T, i = 1, . . . , N (4)

The CIPS statistic is then computed as group-mean of t-statistics obtained from particular CADF
equations, as explained in (3).
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3.2. Cointegration Analysis—Methodology

In this part of the paper, the methodology of cointegration is presented by testing partially the
general procedure proposed by the recent work of Al-Mulali [3,44] for the econometric modelling
of the interdependency between size of the economy and carbon-dioxide emissions. His procedure
consists of cointegration testing and Granger causality testing, adjusted to acquire panel datasets
analysis framework. We diverged from this approach in the last step, using a more explicit modelling
approach, based on two OLS-wise estimation methods in the presence of panel cointegration: Dynamic
OLS (DOLS) and Fully Modified OLS (FMOLS) (see for example, Kao et al. [70]).

Similar to panel unit root tests, panel cointegration tests strive to provide more reliable results in
testing of cointegration presence relative to those obtained by individual tests. The most frequently
used panel cointegration tests are based on unit root testing of residuals from the OLS-wise regression,
in the literature known under the umbrella term of t “Engle-Granger based” cointegration test. The
name stems from the prominent Engle-Granger (EG) cointegration test for individual time series. The
EG test is derived from the basic idea of cointegration models, that two non-stationary time series
are cointegrated if there is some stationary linear combination of them. Consequently, under the null
hypothesis that two series are cointegrated, residuals from their stationary linear combination are also
stationary. Thus, the EG procedure requires two steps: the estimation of static OLS regression to obtain
residuals, and then imposing some unit root testing to residuals (not necessarily ADF).

The broadest framework for a panel cointegration test based on the EG procedure was proposed
by Pedroni [71]. The important advantage of Pedroni’s approach stems from the filtering of short-run
parameters and individual-specific deterministic trends in the first step of the procedure [65]. Based on
estimated residuals, Pedroni derived seven different test statistics. Similar to panel unit root tests based
on ADF, Pedroni’s seven test statistics can be distinguished from those assuming a common process,
typically referred to as “pooled” or “within-dimension” tests, and those assuming individual processes
referred as “grouped” or “between-dimension” tests. The first group of Pedroni’s tests consists of
panel semi-parametric ν-, ρ-, and t-statistics which corresponds to the variance ratio, and Phillip-Peron
ρ- and t-statistics univariate analogues, respectively, and parametric panel ADF t-statistics. The second
group consists also of Phillip-Peron ρ- and t-statistics and ADF t-statistics, but is computed according
to the group-mean principle.

The starting point of the panel cointegration tests of Pedroni [71] is the cointegrating
equation specified:

yi,t = βi
′xi,t + γli

′Dli + εi,t (5)

where xi,t is an independent variable, or in more general case, m-dimensional vector of
independent variables

xi,t = xi,t−1 + εi,t (6)

In line with the EG procedure, cointegration testing is based on the auxiliary regressions of
residuals obtained from (5). Depending on the type of the test with respect to parameterization, two
alternative specifications of auxiliary regressions are possible, (7) for semi-parametric and (8) for a
parametric case

ε̂i,t = ρε̂i,t−1 + µi,t (7)

ε̂i,t = ρε̂i,t−1 + ∑Pi
p=1 φip∆ε̂i,t−p + µ∗i,t (8)

To derive properties of the cointegration testing, Pedroni [71] assumes that partitioned vector
zi,t = [yi,t, xi,t] describes the true data generating process zi,t = zi,t−1 + ξi,t, where the vector
error process ξi,t = [εi,t, εi,t] is stationary with (m + 1)× (m + 1) asymptotic covariance matrix Ωi.
Covariance matrix Ωi can be depicted in the partitioned form as:

Ωi =

[
Ω11i Ω12i
Ω21i Ω22i

]
, (9)
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where Ω11i is a long-run variance of εi,t, Ω22i is a long-run covariance matrix of εi,t, and Ω21i = Ω′12i
is a vector giving long-run covariance between εi,t and εi,t. Under the assumption of the invariance
principle, Ωi can be decomposed to the sum of contemporaneous Ω0

i and dynamic covariance Γi,

Ωi = Ω0
i + Γi + Γ′i. (10)

In addition, Pedroni did a triangularization of the Ωi matrix for the sake of convenience in
cointegration test statistics derivation ending up with lower triangular matrix Li, with the partition
given as

Li =

[
L11i L12i
L21i L22i

]
, (11)

where L11i =
(

Ω11i −Ω′21iΩ
−1
21iΩ21i

)
, L12i = 0, L21i = Ω21iΩ

−1/2
21i , L22i = Ω1/2

21i .
Under the assumption of cross-sectional independence or errors, E[ξi,t, ξk,l ] = 0 ∀i, t, k, l, the

following cointegration test statistics are derived:
Panel ν-statistic

Zν̂NT =
(
∑N

i=1 ∑T
t=1 L̂−2

11i ε̂
2
i,t−1

)−1
(12)

Panel ρ-statistic

Zρ̂NT−1 =
(
∑N

i=1 ∑T
t=1 ε̂2

i,t−1

)−1
∑N

i=1 ∑T
t=1

(
ε̂i,t−1∆ε̂i,t − λ̂i

)
; (13)

Panel t-statistic (semi-parametric)

ZtNT =
(

σ̃2
NT ∑N

i=1 ∑T
t=1 ε̂2

i,t−1

)−1/2
∑N

i=1 ∑T
t=1

(
ε̂i,t−1∆ε̂i,t − λ̂i

)
(14)

Panel t-statistic (parametric)

Z∗tNT =
(

s̃∗2NT ∑N
i=1 ∑T

t=1 L̂−2
11i ε̂

2
i,t−1

)−1/2
∑N

i=1 ∑T
t=1 L̂−2

11i ε̂i,t−1∆ε̂i,t; (15)

Group ρ-statistic

Z̃ρ̂NT−1 = ∑N
i=1

[(
∑T

t=1 ε̂2
i,t−1

)−1
∑T

t=1

(
ε̂i,t−1∆ε̂i,t − λ̂i

)]
; (16)

Group t-statistic (semi-parametric)

Z̃tNT = ∑N
i=1

[(
σ̂2

i ∑T
t=1 ε̂2

i,t−1

)−1/2
∑T

t=1

(
ε̂i,t−1∆ε̂i,t − λ̂i

)]
; (17)

Group t-statistic (parametric)

Z̃∗tNT = ∑N
i=1

[(
ŝ∗2i ∑T

t=1 ε̂2
i,t−1

)−1/2
∑T

t=1(ε̂i,t−1∆ε̂i,t)

]
, (18)

where λ̂i, ŝ2
i , σ̂2

i , σ̃2
NT , ŝ∗2i , s̃∗2NT denote estimates of the nuisance parameters derived from residuals

obtained in (7) and (8): dynamic covariance, contemporaneous variance, and long-run variances of
µ̂i,t and contemporaneous and long-run variance of µ̂∗i,t, respectively, as given by the following set
of equations:

λ̂i = T−1 ∑Ki
s=1 ωsKi ∑

T
t=s+1 µ̂i,tµ̂i,t−s; ŝ2

i = T−1 ∑T
t=1 µ̂i,t; σ̂2

i = ŝ2
i + 2λ̂i;

σ̃2
NT = N−1 ∑N

i=1 L̂−2
11i σ̂

2
i ; s̃∗2i = T−1 ∑T

t=1 µ̂∗i,t; s̃∗2NT = N−1 ∑N
i=1 s̃∗2i ,

(19)



Sustainability 2017, 9, 568 9 of 18

where ωsKi denotes linearly decaying weights, ωsKi = (1− k/(Ki + 1)), of the Newey-West
kernel-based estimator with lag window Ki (weights for all lags beyond Ki are zero). Nuisance
estimates L̂−2

11i are derived from the estimated long-run covariance Ωi also using Newey-West weights.
Eventually, Pedroni [71] shows that all cointegration test statistics after standardization

asymptotically converge to standard normal distribution, so they can be used to test H0 : ρi = 1 ∀i
against the alternative H1 : ρi = ρ < 1 ∀i in case of within-dimension tests or H1 : ρi < 1 ∀i in case of
between-dimension tests. However, “a limitation of the Pedroni test is that it cannot accommodate
structural breaks that have been a common place in energy consumption and GDP” [72] (p. 2332).
According to the [4], the panel cointegration test proposed by Westerlund [73] copes with this issue
by determining structural breaks endogenously. Even more the Westerlund approach accounts for
cross-sectional dependency by using bootstrapping to compute errors [74]. Estimation of the panel
regression in the presence of cointegration is usually conducted using two methods of OLS-based
estimators—FMOLS and DOLS. Using the same notation from cointegration section, the standard
pooled OLS panel estimator is given as:

β̂NT =
(
∑N

i=1 ∑T
t=1(xi,t − xi)

2
)−1

∑N
i=1 ∑T

t=1(xi,t − xi)(yi,t − yi) (20)

Use of FMOLS in panel cointegration analysis has been suggested by Pedroni [75,76]. The pooled
FMOLS estimator as a modification of standardized OLS is given as:

β̂FM =
(
∑N

i=1 L̂−1
22i ∑

T
t=1(xi,t − xi)

2
)−1

∑N
i=1 L̂−1

11i L̂
−1
22i

(
∑T

t=1(xi,t − xi)y∗i,t − Tδ̂i
)

(21)

where y∗i,t = (yi,t − yi) −
(

L̂21i
L̂22i

)
∆xi,t +

(
L̂21i−L̂22i

L̂22i

)
β(xi,t − xi) and δ̂i ≡ Γ̂21i + Ω̂0

21i −(
L̂21i
L̂22i

)
(Γ̂22i + Ω̂0

22i), and other variables are defined as in (9)–(11).
Pedroni [76] emphasized that the main reasons for concern in estimating dynamic cointegrated

panels are heterogeneity issues with differences in means among the individuals and differences in
individuals’ responses to short-run disturbances from cointegrating equilibrium. The FMOLS that he
proposed deals with these two issues by including into regression individual specific intercepts and
by allowing serial correlation properties of the error processes to vary across individual members of
the panel.

The DOLS estimator has been extended to panel analysis by Kao and Chiang [77], who develop
finite sample properties of the OLS, DOLS, and Pedroni’s FMOLS. The DOLS estimator in a panel case
is obtained by running the following regression

yi,t = βi
′xi,t + ∑q

j=−q ζij∆xi,t+j + γli
′Dli + εi,t (22)

where q denotes the numbers of leads/lags typically chosen using some info criterion. Based on
Monte Carlo simulations, they concluded that the DOLS outperforms both the OLS and the FMOLS
estimators in finite samples in terms of unbiased estimation. The DOLS estimator also has an additional
advantage in controlling the endogeneity in the model, as augmentation with the lead and lagged
differences of the regressor supress the endogenous feedback [31]. Thus, the DOLS estimation method
provides a robust correction of endogeneity in the explanatory variables [78].

4. Results

4.1. Results of Panel Unit Root Tests

We applied the abovementioned methodology to the strongly balanced panel dataset. Both
variables were transformed to logarithmic terms before analysis.

Before running the panel unit root tests, we looked for the presence of cross-dependency in
our panel dataset. The literature offers a vast number of tests for the detection of cross-sectional
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dependency. We applied some of the most frequently used: Breusch-Pagan LM (1980), Pesaran scaled
LM (2004), Pesaran (2004), and Baltagi, Feng, and Kao bias-corrected scaled LM (2012). Results of the
tests are presented in Table 1. The results of all four tests applied clearly indicated the strong presence
of cross-sectional dependency, indicating that panel unit root tests of the second generation should
provide more reliable inference.

Table 1. Cross-section dependence tests.

Test l_co2 l_gdp

Breusch-Pagan LM 858.3353 *** 2255.909 ***
Pesaran scaled LM 42.76723 *** 127.5076 ***

Bias-corrected scaled LM 42.26723 *** 127.0076 ***
Pesaran CD 14.20806 *** 47.47031 ***

Note: Null hypothesis: No cross-section dependence. Levels of significance: * p < 0.1, ** p < 0.05, *** p < 0.01.

Basically, specification of the ADF functional form depends on the characteristics of the time series
analysed. When the ADF test is applied to the series levels, it is common to check both ADF versions
with intercept only and intercept and trend (see e.g., Al-Mulali [44]). We applied LLC, IPS, and CIPS
panel unit root tests to GDP and carbon-dioxide levels and first differences, considering both versions
of ADF specification. In the case of LLC and IPS tests, time series were cross-sectionally demeaned to
impede the effects of cross-section dependence. Results are provided in Table 2.

Table 2. Unit root tests.

Level First Difference

Intercept Intercept and Trend Intercept Intercept and Trend

l_co2
LLC −3.7864 *** −7.159 *** −6.9140 *** −5.6412 ***
IPS −1.8709 ** −1.8709 *** −4.9425 *** −4.9329 ***

CIPS −1.984 −2.095 −2.222 ** −2.229

l_gdp
LLC −2.1855 ** −3.6908 *** −7.1496 *** −8.5949 ***
IPS −0.7983 −1.8554 −3.2694 *** −3.5160 ***

CIPS −1.670 −2.293 −2.678 *** −3.485 ***

Note: Null hypothesis: Panels are stationary; IPS and CIPS tests based on ADF and CADF group-mean t-test statistics,
respectively. Levels of significance: * p < 0.1, ** p < 0.05, *** p < 0.01. LLC, Levin-Lin-Chu test; IPS, Im-Pesaran-Shin
test; CIPS, Cross-sectional IPS test; ADF, augmented Dickey-Fuller; CADF, Cross-sectional ADF regression.

Results of the panel unit root testing are mixed, especially in case of carbon-dioxide, where LLC
and IPS tests indicate stationarity in both levels in first differences, while CIPS mostly suggests that
some panels are not stationary. In the case of GDP, the situation is clearer, as IPS and CIPS suggest
non-stationarity in levels and stationarity in differences, and these two tests are more reliable, keeping
in mind that LLC restriction on common autoregressive processes for all panels is too restrictive. We
decided to give more power to the CIPS test in the case of carbon-dioxide relative to LLC and IPS,
due to the clear presence of cross-sectional dependence documented in Table 1. Also, we neglected
non-stationarity in l_co2 differences as suggested by the CIPS when trend is included, as in this ADF
specification it may be less relevant—differentiation of the series usually eliminates deterministic
trends. Eventually, we considered both GDP and carbon-dioxide being non-stationary in levels and
stationary in differences.

4.2. Results of Cointegration Analysis

As in Al-Mulali’s work [44], we started with the regression equation where CO2 is a dependent
variable, and GDP is an explanatory variable. Then we applied seven Pedroni’s tests of panel
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cointegration. We considered both cases of deterministic trend and intercept only. The null hypothesis
for all tests assumes no cointegration between variables. Results are presented in the Table 3.

Table 3. Panel cointegration tests.

Dimension Test Statistics Intercept Intercept and Trend

Within-dimension

Panel v-Statistic 3.1553 *** 0.6033
Panel rho-Statistic −3.4333 *** −0.2595
Panel PP-Statistic −5.1231 *** −3.0995 ***

Panel ADF-Statistic −5.5646 *** −4.1467 ***

Between-dimension
Panel rho-Statistic −1.8934 ** 0.8565
Panel PP-Statistic −6.4690 *** −4.3839 ***

Panel ADF-Statistic −7.9836 *** −6.1632 ***

Note: Alternative: common AR coefficients for within-dimension, individual AR coefficients for between dimension.
Levels of significance: * p < 0.1, ** p < 0.05, *** p < 0.01.

“It can be regarded as a sign of robustness if different test statistics lead to the same test
decision, because evidence based on Monte Carlo simulations has shown that the various test statistics
perform differently depending on the panel dimension and the assumed data generating process” [65]
(p. 16). In our case, the majority of tests clearly suggest rejecting the null hypothesis and presence of
cointegration, both in cases of deterministic trend and no trend included.

To provide additional cointegration testing that is robust to structural breaks and cross-sectional
dependence, we use the Westerlund [73] approach. It provides four panel-based statistics testing the
null of no cointegration by inferring whether the error-correction term in a conditional panel VECM is
equal to zero [74]. The results of the Westerlund cointegration testing are presented in Table 4. Based
on bootstrapped robust critical values, three of four tests reject the null, additionally confirming the
presence of cointegration.

Table 4. Westerlund Panel cointegration tests.

Test Statistics Value

Gt −1.615 ***
Ga −2.294
Pt −4.416 ***
Pa −1.584 *

Note: Alternative: the panel is cointegrated as a whole for G-tests, at least one unit is cointegrated for P-tests. Levels
of significance: * p < 0.1, ** p < 0.05, *** p < 0.01.

Next, we estimated the cointegrating relationship between carbon-dioxide and GDP using both
the FMOLS and DOLS estimators. In the case of the FMOLS, we included the deterministic trend
into the cointegrating relationship, while the trend in the DOLS estimation was suppressed by the
specification of the regression in dynamic terms. In both cases, we used pooled and grouped versions
of the FMOLS and DOLS estimators, where grouped mean estimations computed the cross-section
average of the individual cross-section estimates. The results are presented in Table 5. Estimates of
short-run relationships and lagged variables were suppressed.
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Table 5. Estimation of cointegrating relationship.

Estimation Method
FMOLS DOLS

Polled, Trend Grouped, Trend Pooled Grouped

Long-run coefficient 0.3448 *** (0.0405) 0.3782 *** (0.0252) 0.3484 *** (0.0454) 0.3770 *** (0.0284)

No. of observations 289 289 255 255

R-squared adj. 0.9941 0.9958

Note: Standard errors in parentheses. Levels of significance: * p < 0.1, ** p < 0.05, *** p < 0.01. FMOLS, Fully Modified
OLS; DOLS, Dynamic OLS; OLS, Ordinary Least Squares.

The results clearly suggest the existence of the long-run cointegrating relationship between CO2

emissions and real GDP that is statistically significant. For all four versions of the estimations, it is
approximately 0.35, meaning that, on average, a 1% change in GDP leads to a 0.35% change in CO2

emission for the considered group of transition countries. The close values of long-run coefficients for
all estimations confirm the robustness of the estimated results.

5. Discussion

Cointegration analysis for 17 transitional economies was conducted using DOLS and FMOLS
approaches developed by Pedroni [71] and Kao and Chiang [77], respectively. The results perspicuously
present the existence of a statistically significant long-run cointegrating relationship between CO2 and
real GDP. For all versions of estimations, the coefficient was approximately 0.35, which means, on
average, that a 1% change in GDP leads to around a 0.35% change in CO2 for transitional economies.
This result corresponds to the estimates in [28], which examined GDP and CO2 relationships for a
similar panel of countries. The main difference between [28] and our work is that [28] estimates static
and dynamic contemporaneous relationships of GDP and CO2, while our work provides long-run
cointegration assessment.

However, it is of the utmost importance to emphasize that this result does not shed light on the
factors behind the observed relationship. There is a variety of factors which need to be considered if
we want to try to understand the nature of the relationship between environmental degradation and
economic growth.

Firstly, inadequate allocation of resources in transitional economies frequently leads to their
inefficient use, which, in turn, results in the increase of pollution as a negative externality of production
processes [79]. Furthermore, one of the main characteristics of a transitional economy is that it uses
energy that is largely based on fossil fuel combustion. The share of energy used from renewable energy
sources is increased only in later stages of the transition process of these economies.

Outdated knowledge and deficient expertise of the management function in production companies
can also be examined as a contributing factor to increasing pollution, although an indirect one. This
is primarily due to the insufficient understanding of the significance of investing in modernization
of production processes [80] which have much smaller negative ecological impacts. Outdated and
deficient use of technology is therefore a significant source of pollution, and, as such, it is crucial that
both the management function and policymakers have to recognize the importance of investing in
new technologies. In relation with the abovementioned points, state-owned enterprises in transitional
economies are able to use their political power and/or a monopoly position to their advantage and may,
to a certain extent, ignore environmental protection legislation [27]. Sometimes, these companies are
so large and strategically important that they can block certain regulations in environmental protection
when and where their interests are at stake.

In the discussion about the characteristics of transitional economies in terms of ecology, we cannot
ignore the social component, especially in terms of general environmental awareness, which can
significantly contribute to reducing pollution [79]. Overall, the populations in transitional countries
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are less aware about environmental problems than the populations in developed countries, and
consequently, the community pressure on manufacturers to reduce pollution is diminished.

Moreover, transitional economies in general need to follow global policy incentives, such as
COP 21, and make additional efforts to achieve the targets established by this and other international
agreements. To this date, all transitional countries have signed the COP 21, except Uzbekistan [81].
Furthermore, they have to revise and update the existing policies and laws, as well as to create
new environmental policies and laws that will go towards reducing pollutant emissions, primarily
anthropogenic ones. One of the specific ways to reduce CO2 emissions is by capture and storage,
which is considered to be a pivotal strategy for meeting CO2 emission reduction targets [82]. It consists
of technologies “being developed to allow CO2 emissions from fossil fuel use at large point sources to
be transported to safe geological storage, rather than being emitted to the atmosphere” [83,84] (p. 4317).
Transitional economies can consider implementing technologies for CO2 capture and storage, but a
main limitation is that this process is relatively expensive.

The abovementioned regulations should also further develop mechanisms such as environmental
taxes and emissions-trading schemes. Environmental tax, ecological tax, eco-tax, pollution tax, or
green tax are all “synonyms” describing every form of taxation in which the tax base is expressed in
physical units of substance or matter that has a proven negative impact on the environment [85]. These
taxes can substantially contribute to efforts to reduce pollutant emissions, especially if the tax revenue
is directed towards addressing environmental issues. Taxes on environmentally harmful behaviour
have the potential to raise revenues for developing and transitional governments in general [86].
On the other hand, carbon-trading schemes (cap and trade) are based on the principle that an increase
in pollution from a single source must be accompanied by an equivalent reduction of pollution
from other sources. Developed countries have these schemes to try to limit pollutant emissions and
provide incentives for those who decide to pollute less. The European Union’s Emissions Trading
Scheme (EU ETS) is the world’s first large scheme for trading CO2 emissions [87,88], and transitional
economies can find a satisfactory know-how from these countries on creating and/or developing an
emissions-trading scheme.

In the context of future research, new variables can be introduced into the CO2–GDP nexus,
such as: foreign trade, energy consumption, renewables, capital investments, financial development,
agricultural, industrial, social and sustainable indicators and indices, etc. Additionally, factors such as
composition of GDP, level of technological development, and environmental awareness can be further
examined as decisive factors in the relationship between CO2 emissions and economic growth.

6. Conclusions

The nexus between the environment and economic growth is one of the most important
relationships, for policy makers, academia, and industry alike. As early as the 1980s, this relationship
has been the focal point of theoretical and empirical research, because a direct consequence of pollutant
emissions is climate change and especially global warming.

The cointegrating relationship was estimated by using panel DOLS and FMOLS estimators
for 17 transitional economies. Results suggest the existence of a long-run cointegrating relationship
between CO2 emissions and real GDP that is statistically significant. For all four versions of estimations
the observed calculated coefficient was approximately 0.35, which means that, on average, a 1% change
in GDP leads to a 0.35% change in CO2 emission for the considered group of countries. Close values of
long-run coefficients for all estimations confirm the robustness of the estimated results.

Furthermore, it is necessary to state that this result does not explain the factors behind the observed
CO2–GDP relationship. Future research should introduce new variables into the CO2–GDP nexus.
Transitional economies need to follow global policy incentives to implement new mechanisms and
instruments for the purpose of reducing CO2 emissions, such as environmental taxes, emissions-trading
schemes, and carbon capture and storage.
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In addition, inadequate allocation of resources and the increased use of renewable energy must
be taken into consideration in the efforts to battle increasing pollution. Knowledge of the management
structure and the importance of investing in new technologies must be acknowledged, as well as the
need to raise ecological awareness.
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održive privrede. Ecologica 2014, 74, 165–168.
14. Schwartz, J.D. Is GDP an Obsolete Measure of Progress? Time Mag. 2010. Available online: http://content.

time.com/time/business/article/0,8599,1957746,00.html (accessed on 4 January 2017).

http://dx.doi.org/10.1016/j.enpol.2009.09.005
http://dx.doi.org/10.1023/A:1011188401445
http://dx.doi.org/10.1016/j.energy.2012.05.045
http://www.beta-umr7522.fr/productions/publications/2001/2001-01.pdf
http://www.beta-umr7522.fr/productions/publications/2001/2001-01.pdf
http://dx.doi.org/10.1016/j.jpubeco.2005.09.005
http://dx.doi.org/10.19030/jabr.v28i1.6682
https://www.csae.ox.ac.uk/conferences/2011-EdiA/papers/776-Seetanah.pdf
https://www.csae.ox.ac.uk/conferences/2011-EdiA/papers/776-Seetanah.pdf
http://dx.doi.org/10.3390/su8090874
http://dx.doi.org/10.1016/j.rser.2012.02.015
http://content.time.com/time/business/article/0,8599,1957746,00.html
http://content.time.com/time/business/article/0,8599,1957746,00.html


Sustainability 2017, 9, 568 15 of 18

15. Kassenboehmer, S.C.; Schmidt, C.M. Beyond GDP and Back: What Is the Value-Added by Additional
Components of Welfare Measurement? RUHR Economic Papers. 2011. Available online: https://papers.
ssrn.com/sol3/papers.cfm?abstract_id=1753686 (accessed on 23 December 2016).

16. Bleys, B. Beyond GDP: Classifying alternative measures for progress. Soc. Indic. Res. 2012, 109, 355–376.
[CrossRef]
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85. Filipović, S. Ecological taxes in some European countries. Ekonomski Anali 2004, 49, 209–224. [CrossRef]
86. Bluffstone, R.A. Environmental Taxes in Developing and Transition Economies. Public Financ. Manag. 2003,

3, 143–175. [CrossRef]

https://www.econstor.eu/bitstream/10419/121070/1/N_065.pdf
https://www.econstor.eu/bitstream/10419/121070/1/N_065.pdf
http://dx.doi.org/10.1016/S0304-4076(01)00098-7
http://dx.doi.org/10.1016/S0304-4076(03)00092-7
https://hal.archives-ouvertes.fr/halshs-00159842/document
https://hal.archives-ouvertes.fr/halshs-00159842/document
http://dx.doi.org/10.1002/jae.951
http://dx.doi.org/10.1017/S0266466604203073
http://dx.doi.org/10.1016/j.eneco.2007.10.006
http://dx.doi.org/10.1111/j.1468-0084.2007.00477.x
http://web.williams.edu/Economics/pedroni/WP-96-20.pdf
http://web.williams.edu/Economics/pedroni/WP-96-20.pdf
http://www.emeraldinsight.com/doi/abs/10.1016/S0731-9053(00)15004-2
http://www.emeraldinsight.com/doi/abs/10.1016/S0731-9053(00)15004-2
http://www.emeraldinsight.com/doi/abs/10.1016/S0731-9053(00)15007-8
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2128484
https://espace.library.uq.edu.au/view/UQ:108308
http://dx.doi.org/10.1111/1467-6486.00340
http://unfccc.int/paris_agreement/items/9444.php
http://dx.doi.org/10.1016/j.rser.2014.07.093
http://dx.doi.org/10.1016/j.enpol.2008.09.058
http://dx.doi.org/10.2298/EKA0462209F
http://dx.doi.org/10.2139/ssrn.461539


Sustainability 2017, 9, 568 18 of 18
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